EVALUATION AND ANALYSIS OF VIBRATION EFFECTS ON BUS USERS

Dragan Sekulić¹, Dušan Mladenović
Department for road vehicles and vehicle dynamics
The Faculty of Transport and Traffic Engineering, Vojvode Stepe 305
Belgrade, Serbia
d.sekulic@sf.bg.ac.rs

Abstract

The paper deals with classification and basic characteristics of vibration that act on users during bus exploitation. Some physiological and psychological effects of vibration acting on bus drivers and passengers are presented. In addition, this paper shows the results of evaluation of vibration effects on the users' comfort (the driver and three passengers) for intercity bus IK-301. Evaluation has been carried out according to the procedure and criteria prescribed by two versions of International standard ISO 2631 (1985, 1997). For the purpose of this analysis, validated bus oscillatory model developed in multibody software package ADAMS/View was used. The oscillatory model was excited by road roughness (asphalt-concrete pavement in poor condition) registered on two tracks at speed of 64 km/h. It was found that the passenger seating on the seat in the bus rear overhang has the worst comfort and the shortest allowable vibration exposure time.

Keywords - whole body vibration; comfort; bus users; ISO 2631

INTRODUCTION

The traffic participants, particularly the users of vehicles (both passengers and drivers) of each means of transport (road, railway, air or water transport) are affected by vibrations. The drivers of heavy motor vehicles and buses fall into high risk category[1]. In comparison with car drivers, heavy motor vehicle drivers are affected by higher intensity vibrations during their 8-hour working shifts[2]. As a result, the effects of vibrations have certain side effects (physiological and psychological disorders) which are highly prominent in case if they are affecting someone for a longer period of time.

¹ Original scientific paper
Vibrations have a negative effect on vehicle user’s comfort and ability to work and if they reach a certain level, they become health threatening and decrease safety.

The EU passed a directive 2002/44/EC (directive on vibration) in order to alleviate the negative influence of vibrations and protect health at workplaces. Directive 2002/44/EC defines the indicator of exposure to vibrations $A(8)$ ($A(8)$ - daily exposure value to vibrations) which limit values indicate that corresponding safety measures should be taken. The bus drivers may be exposed to Whole-Body Vibrations (WBV) intensity that exceeds daily exposure action value $A(8)$ which is 0.5 m/s2[3]. During one working day, the intensity of Hand-Arm Vibrations (HAV), transmitted from the steering wheel to bus driver’s arms and hands, may exceed daily exposure action value $A(8)$ which is 2.5 m/s2[3].

The classification and basic characteristics of vibrations that act on bus users are presented in this paper. Certain physiological and psychological effects of vibrations are examined, with accent on bus drivers and passengers. In the paper, the influence of vibrations on users’ comfort (driver and three passengers) for intercity bus IK-301 has been carried out according to standard ISO 2631 (1997, 1985). The acceleration signals from simulations analysis were processed by programming code written in software package Matlab.

CLASSIFICATION AND BASIC CHARACTERISTICS OF VIBRATIONS

The vibrations are divided into two categories according to the body part that is affected: whole-body vibrations and local vibrations (the vibrations of certain parts (segments) of human body).

WBV occur when body comes in contact with the vibrating surface. This category of vibrations affects the body in different positions (while sitting, standing or in reclining position). Passengers of motor vehicles are exposed to the effect of these vibrations. The vibrations are transmitted across the whole body through passenger’s legs (if the passenger is standing), through the lower back if the passenger is sitting, and across the whole body if the passenger is lying.

WBV are particularly important in frequency range from 1 Hz ÷ 80 Hz. The main resonant points of some organs and human body parts (e.g. head, eyes, stomach and spine) are located in this frequency range[4]. WBV of extremely low frequencies (under 0.5 Hz) cause “seasickness”[4].

Local vibrations have an effect on human body parts (arms, legs, head etc.) in the frequency range from 8Hz ÷ 1000 Hz. HAV in the motor vehicles appear when driver’s hands contact the steering wheel and other controls
(e.g. gear lever). The intensity of WBV and HAV depend on the bus type, the quality and the type of the pavement surface and the bus speed [5].

The vibrations are transmitted from the bus floor to the passenger’s legs, through the seat to the passenger’s lower back and through the seat back to passenger’s back (fig. 1a). The driver’s body is affected by the vibrations, which are transmitted from the steering wheel to his arms, too (fig. 1b). The passenger’s and the driver’s body are also affected by rotational vibrations which are transmitted from their seats.

Fig. 1. Receiving positions of vibrations in a vehicle for a) Passenger and b) driver

In this paper, the three translational x, y, z-axes vibrations transmitted from users’ seats to their bodies were taken into account when examining bus users’ comfort. These vibrations have the highest intensities and apparently the most negative influences on users’ bodies.

THE EFFECTS OF VIBRATIONS ON THE BUS USERS

The results of the numerous studies show that the vibrations may cause certain disorders of physiological as well as psychological functions of the bus user’s body. These disorders are more prominent with bus drivers because of the prolonged exposure to vibrations.

The most important physiological effects of vibrations refer to biochemical changes, neuro-vegetative system impairments and cardiovascular illnesses and musculoskeletal disorders.

The effect of vibrations causes biochemical changes (hormonal changes, uric acid, enzyme levels, gastric secretions, etc.). It has been shown that, even though they are present, these changes were in within regular physiological range.

Neuro-vegetative reactions were noticed under the influence of low frequency vibrations and resulted in vertigo, nausea, etc. Vibrations have an
effect on the heart rhythm and blood pressure, too. In Sweden the risk of having particular types of cardiovascular conditions (e.g. hearth attack) is three times higher when being a professional driver in comparison to other workers who are not exposed to vibrations [6]. The death rates caused by cardiovascular diseases depend on the length of the bus drivers working life [6].

Musculoskeletal disorders such as back injuries and back pain (particularly the low back pain), damage of intervertebral disc, vertebra injuries and osteoarthritis are connected to the effect of the vibrations. It is shown that 84% of bus drivers in the USA and 49% of bus drivers in Sweden suffer from low back pain [7]. According to [7] 43% of bus drivers suffer from neck pain, whereas 42% of bus drivers suffer from shoulder pain. Musculoskeletal disorders are the most prevalent health problems in bus drivers [8].

The effects of vibrations on cognitive processes in drivers and passengers is less researched area. The studies have shown that vibrations have the most significant effect on short memory [9]. Frequency and intensity of vibrations have the biggest influence on passengers’ reading and writing ability during transportation [10].

STANDARD ISO 2631

The international standard ISO 2631 mechanical vibration and shock - Evaluation of human exposure to whole-body vibration provides the methods of measuring, quantifying and evaluation the effects of random and shock vibrations on human body. Two versions of this standard (ISO 2631 (1997) and ISO 2631 (1985)) are being used to analyse the effect of random vibrations [11, 12].

Standard ISO 2631 (1997) defines the method of quantifying the WBV and evaluation of their effects on health, comfort, perception and the occurrence of “seasickness”. The standard prescribes the total value of the root mean square (rms) weighted accelerations as basic quantity for estimating the effect of vibrations on comfort, expression 1.

\[
a_v = \left((k_x \cdot \ddot{x}_{rms,w})^2 + (k_y \cdot \ddot{y}_{rms,w})^2 + (k_z \cdot \ddot{z}_{rms,w})^2 \right)^{1/2}
\]

where \(a_v\) - the total value of rms weighted accelerations from users’ seats (m/s²); \(k_x, k_y, k_z\) - multiplying factors for rms values of weighted accelerations along direction of \(x, y, z\)-axes (values of the factors \(k_x, k_y, k_z\) when estimating ride comfort are equal to one); \(\ddot{x}_{rms,w}, \ddot{y}_{rms,w}, \ddot{z}_{rms,w}\) - rms of the weighted accelerations for \(x, y, z\)-axes (m/s²) (expressions 2, 3 and 4).
where \(\ddot{x}_{wi}, \ddot{y}_{wi}, \ddot{z}_{wi} \) - samples of weighted acceleration for directions of \(x, y, z \)-axes (m/s²); \(N \) - samples number of weighted accelerations signals;

To assess the influence of vibrations on comfort, weighting filters \(W_k \) and \(W_d \) are being used (fig. 2). Filter \(W_k \) is used for weighting of the vertical acceleration (along \(z \)-axis), whereas filter \(W_d \) for weighting of the horizontal accelerations (along \(x, y \)-axes) [11,12]. According to analytical formulas for these filters, function subprograms are defined in software package *Matlab* for accelerations weighting.

![Weighting filters, ISO 2631 (1985, 1997)](image)

The assessment of comfort was done by comparing the simulation-established \(\alpha \) values to comfort criteria in public means of transport defined by ISO 2631 (1997) (fig. 3a).
Standard ISO 2631 (1985) defines the amount of allowable exposure time to vibrations for three criteria - reduced comfort, workingability and health. When estimating the allowable exposure time, diagrams with ISO limits curves for vertical and horizontal directions are used (fig. 3b). ISO 2631 (1985) standard prescribes filter W_z for weighting of the vertical accelerations [12], (fig. 2).

The process of quantifying the accelerations and determining Root Mean Square curves (RMS curves) was described in detail in [13].

EVALUATION OF USERS' RIDER COMFORT OF INTERCITY BUS IK-301

Ride comfort of four IK-301 bus users are analysed - driver, passenger in the bus front overhang (passenger3), passenger in the middle part of the bus (passenger18) and passenger in the bus rear overhang (passenger 51). The users’ seats are marked in the fig. 5b and fig. 5c.

Fig. 3a shows an recorded signal of the asphalt-concrete pavement roughness in bad condition as a function of travelled distance. It is registered on the road section of 161 m at the speed of the of 64 km/h [14]. Measuring vehicle has recorded roughness on two tracks. The signal was translated in function of time (fig. 4b) and introduced in IK-301 bus oscillatory model by CUBSPL functions.
The IK-301 bus is intended for intercity passengers transport (fig. 5a). Technical data of the bus is presented in [15]. Seat layout is shown in fig. 5b. The bus has 53 passenger’s seats, a seat for the driver and a seat for co-driver.

Driver’s seat is equipped with pneumatic suspension system, whereas passengers’ seats and co-driver’s seat are rigidly attached to the bus platform. Oscillatory parameters of the users’ seats are described in [13].

Bus IK-301 oscillatory model has been built in multibody software package ADAMS/View (fig. 5c). ADAMS/View has an graphic user-friendly interface that enable the users to model mechanical systems, to simulate and to visualize the motions of mechanical system parts in space, to analyse and process the simulation data, etc. These powerful functions are enabled by integrating ADAMS/Solver module and ADAMS/Postprocessormodule into ADAMS/View.

According to Gruebler’s equation, oscillatory model has 65 degrees of freedom. The process of model validation is described in detail in [13].

ADAMS/Solver uses Euler-Lagrange method when automatically forming differential equations of motion. The Gear Stiff (GSTIFF) integrator
is chosen for numerical integration. The acceleration signals have been sampled on every 0.001 s during the simulation time of 9 s.

Fig. 6 shows the results of the simulation - bus users’ vertical and horizontal translational accelerations. It can be noticed that vertical acceleration is dominant one for every user, while passenger51 is exposed to the highest vertical accelerations intensity.

![Fig. 6. Accelerations in the seat of a) the driver, b) passenger3, c) passenger18 and d) passenger51](image)

Table 1 represents the \(\text{rms} \) value of weighted acceleration for the \(x, y, z \)-axes direction, as well as the total \(\text{rms} \) value \(\alpha_v \) for IK-301 bus users. In the last column, the assessment of users’ comfort has been shown.

<table>
<thead>
<tr>
<th>Bus users</th>
<th>(\text{RMS values of the weighted acceleration [m/s}^2])</th>
<th>Total (\text{RMS value [m/s}^2])</th>
<th>Comfort evaluation (ISO 2631 (1997))</th>
</tr>
</thead>
<tbody>
<tr>
<td>driver</td>
<td>0.035, 0.146, 0.301, 0.336</td>
<td>little uncomfortable</td>
<td></td>
</tr>
<tr>
<td>passenger3</td>
<td>0.053, 0.126, 0.454, 0.474</td>
<td>little uncomfortable</td>
<td></td>
</tr>
<tr>
<td>passenger18</td>
<td>0.058, 0.066, 0.370, 0.380</td>
<td>little uncomfortable</td>
<td></td>
</tr>
<tr>
<td>passenger51</td>
<td>0.055, 0.135, 0.640, 0.656</td>
<td>fairly uncomfortable</td>
<td></td>
</tr>
</tbody>
</table>

Simulation results from table 1 show that \(\text{rms} \) values of weighted accelerations for vertical direction are dominant ones. The lowest total \(\text{rms} \) value at 0.336 m/s\(^2\) has been determined for driver. Driver’s comfort were assessed as “little uncomfortable”. The same assessment has been determined for passenger3 and passenger18. Passenger51 has been exposed to the highest total \(\text{rms} \) value at 0.656 m/s\(^2\), and his comfort was assessed as “fairly uncomfortable”.

442
Fig. 7 represents ISO 2631 (1985) limit lines for ride comfort in z-axis direction and RMS curves. Peaks of RMS curves define the allowable exposure time to WBV.

![Fig. 7. Allowable exposure time to vibration for z-axis for the reduced comfort criterion](image)

It can be noticed that the driver has the longest allowable exposure time to WBV (8 hours), whereas the passenger 51 has the shortest one (about 1 hour). Passenger 18 has longer allowable exposure time (little over 2.5 hours) in comparison to passenger 3 (less than 2.5 hours).

CONCLUSION

Passengers and bus drivers are exposed to WBV that are transmitted from roughness pavement through seat to their bodies. Vibrations affect the comfort, work ability and jeopardize vehicle user’s health.

According to simulation results, passenger in the rear overhang of the bus IK-301 has the lowest oscillatory comfort according to criteria of standard ISO 2631 (1997). Among all analysed users, the driver has the most favourable oscillatory comfort because of his elastically suspended seat. According to ISO 2631 (1985), passenger in the back has the shortest allowable exposure time to WBV (approximately 1 hour), and the driver has the longest one (approximately 8 hours).

The knowledge about the vibrations intensity, which the bus users are exposed to, is important for taking proper safety measures by which users’ comfort and health could be improved. Results from simulation researches could be used to optimize oscillatory characteristics of the bus systems in order to increase the bus users’ comfort.
REFERENCES